故事库-中国往事  > 所属分类  > 
[0] 评论[0] 编辑

杨武之

杨武之(1896— 1973)原名杨克纯,武之是他的号。 1896年4月14日出生于安徽合肥。数学家,数学教育家。长期在清华大学和西南联合大学数学系任系主任或代主任。是我国早期从事现代数论和代数学教学与研究的学者,诺贝尔奖获得者杨振宁的父亲。杨武之的主要学术贡献是数论研究,尤其以华林(Waring)问题的工作著称。杨武之一生从事数学教育,特别是在清华大学和西南联合大学执教并主持系务时期,培养和造就了两代数学人才,对中国现代数学的贡献很大。
中文名
杨武之
原名
杨克纯
雅号 
武之
国籍 
中国
民族
出生地 
安徽合肥
出生日期
1896年4月14日
逝世日期 
1973年5月12日
职业 
数学家,数学教育家
毕业院校
北京高等师范学校
主要成就 
数论研究

目录

杨武之(1896— 1973)原名杨克纯,武之是他的号。 1896年4月14日出生于安徽合肥。数学家,数学教育家。长期在

杨武之,安徽凤阳人。

1957年,杨振宁一家和杨武之在日内瓦1957年,杨振宁一家和杨武之在日内瓦

1896年4月14日 出生于安徽合肥(今属肥西县)。

1914年 毕业于安徽省立第二中学。

1914—1918年 毕业于北京高等师范学校预科和数学系本科。

1918—1922年 任安徽省立第二中学及安徽省安庆中学教师。

1923—1928年 赴美国留学,在芝加哥大学获硕士和博士学位。

1928—1929年 任

青少年

杨武之的父亲

博士论文:推进“棱锥数的华林问题”

中国的数论研究源远流长。孙子定理,中国剩余定理,秦九韶的不定方程理论,都是享誉世界的名篇。但到明清之际,数论研究已远远落后于欧洲,到本世纪20年代,能研究现代的数论而发表创造性论文的中国人,当以杨武之为第一人。

所谓华林问题,是指下列猜想:每个正整数都是4个平方数之和,9个立方数之和,一般地,g(k)个k次方数之和。1770年,J.-L.拉格朗日(Lagrange)证明了每个正整数确实是4个平方数之和,即g(2)=4。1909年,大数学家D.希尔伯特(Hilbert)证明:g(k)必是有限数。1928年,杨武之的导师狄克逊证得:g(3)=9。另外,S.W.贝尔(Baer)证明,凡大于23×1014的整数是8个立方数之和。于是狄克逊要杨武之考虑带系数的华林问题,即每个正整数f可否表示为f=rx3十C7,其中C7=x31十x32十…十x37,r=0,1,2,…,8.杨武之很快得到下述结果:

1.凡是大于14.1×4016的正整数都可表示为rx3十C7,其中r=5,7。

2.凡大于(30.1)×4196的正整数都可表示为3x3十C7。

3.凡大于23×1014的正整数都可表为8×c3十C7。

4.凡大于23×1014的奇正整数都可表示为rx3十C7,其中r=2,4,6。

5.凡大于23×1014的奇正整数的两倍,都可表为2x3十7。

杨武之的博士论文还讨论了带系数的7次方数的表示等问题。

杨武之最好的工作是关于棱锥数的华林问题。棱锥数p(n)=1/6(n3-n)是三角形数f(n)=n/2(n十1)的推广。1640年,费马(Fermat)猜测每个正整数都是不超过3个三角形数之和。后来证明这是对的。至于每个正整数能表示为几个棱锥数之和,也陆续有人研究。1896年,W.J.马耶(Maillet)首先得到,每个充分大的正整数是12个棱锥数之和。1928年,杨武之在博士论文里证明:

每个正整数都可写成9个棱锥数之和。此结果在20余年内没有改进,直至G.N.沃森(Watson)在1952年将“9个”减为“8个”。到1991年为止,这仍是已证明了的最好结果。

电子计算机出现之后,许多人曾作过实际验算,认为除241个例外数之外,小于106的正整数都是5个棱锥数之和。1991年,杨振宁和邓越凡等人的计算表明,凡小于109的正整数,除了17,27,…,343867等241个例外数之外,都是4个棱锥数之和。他们猜想,除这241个数之外,表示任何正整数,只要4个棱锥数就够了。

杨武之的这篇博士论文,首先在美国数学会的会议上作了介绍(1928年4月6日)。同年美国数学会通报第34卷,第412页上曾对此作了报道。以后全文发表于1931年的《清华理科报告》。

主要作品

1 Yang Ko-Chuen.The invariants of billinear forms,a dissertation for thedegree of Master of Science.Chicago,1926.

2 Yang Ko-Chuen.Various generalization of Waring,s pro bl em.Ch i c a go ,1928(Thesis,Chicago,1928).

3 K.C.Yang.Representation of Positive integer by Pyramidal numbers,….Science Report of Tsing Hua Univ.,1931,A1:9—15.

4 K.c.Yang.Quadratic field with out Euclid’s algorithm.Science Reportof the Tsing Hua Univ.1935,A1:261-264.

5 杨武之.关于同余式的一个定理.清华学报,1935,6(2):107.

社会影响

1928年,清华留美预备学校改制为清华大学。郑之蕃、熊庆来先期来清华大学任教。1928年和1929年,孙光远与杨武之亦先后到校。这4位教授,加上唐培经、周鸿经两位教员,阵容极一时之盛。1930年,陈省身跟孙光远学几何。次年,华罗庚又来校跟杨武之研习数论。随后的学生又有许宝騄、柯召等人的到来。30年代的上半期,清华大学已成为国内最强的数学中心。

杨武之在清华大学讲授过很多代数课程,特别是30年代初开设的群论课,影响了大批的后学者。

抗战以后,清华大学与北京大学、南开大学并为西南联合大学。杨武之又担任数学系的系主任,以及清华大学数学研究生部的主任。战时的生活十分艰苦,但是西南联合大学数学系的学术生活并不贫乏,科学水平节节上升,这和杨武之的组织与领导是分不开的。

人物轶事

杨武之与华罗庚

华罗庚自学成才,踏进清华园的传奇故事已是尽人皆知,但是究竟清华园内的数学圈内怎样发现华罗庚的细节,如今已很难查考。应该说,唐培经杨武之熊庆来等先生都为华罗庚来清华大学作出过努力,而系主任熊庆来的支持,则是关键的一着。

华罗庚来到清华大学以后,选择数论为研究方向,而且集中研究华林问题,显然是受到杨武之的直接影响。华罗庚在1980年写给香港《广角镜》周刊的一封信说:“引我走上数论道路的是杨武之教授。”

华罗庚于1936年赴英国,追随G.H.哈代(Hardy)学习解析数论,成绩卓著。杨武之为自己的学生超过自己而高兴非凡。1938年华罗庚回国后到西南联合大学任教。当时担任系主任的杨武之,不顾学校里的各种反对意见,向校方提出破格提升华罗庚的职务,即越过讲师、副教授直升正教授。起初校方以华罗庚未在英国拿博士学位而拒绝,后经杨武之力争,最终才得到同意。所以,华罗庚在上述给《广角镜》的信中也写道:“从英国回国,未经讲师、副教授,直接提我为正教授的又是杨武之教授。”

在西南联合大学时期,杨武之和华罗庚曾同住于昆明西北郊的大塘子村。两家过往很密。当年,华罗庚曾有一信给杨武之,内称:“古人云:生我者父母,知我者鲍叔。我之鲍叔即杨师也。”

杨武之留给杨振宁夫妇的题辞杨武之留给杨振宁夫妇的题辞

杨武之所师法的迪克森学派,在本世纪初的美国影响很大。后来由于英国、苏联等国的解析数论的兴起而渐渐式微。所以,杨武之的数论研究虽曾起过启蒙和推动的作用,可惜由于迪克森学派的衰落而未能发挥重大影响。中国数论学派,在华罗庚的领导下,获得了重大的发展。饮水思源,人们将会缅怀杨武之在早期所发挥的前驱作用。

杨武之与杨振宁

杨武之是杨振宁除了物理系直接教他的这些教授们外,对他的影响相当大的一个人。杨武之是一位将近世代数和数论、将西方现代数学方法引入中国的我国现代数学的先驱者之一,也是一位为我国数字教育作出重要贡献的数学家。杨武之是一位教学极为认真的教授,也是一位教子极为严格的父亲。他早就在日常生活中,循循善诱,潜移默化地将不少数学知识传授给了儿女们。杨振宁在学校里,遇有不懂的问题、碰上难以处理的事,总是经常跑到数学系办公室向父亲请教。杨振宁后来说:“父亲对我们子女们的影响很大。从我自己来讲:我小时候受到他的影响而早年对数学发生浓厚的兴趣,这对我后来搞物理学工作有决定性的影响。”杨武之对杨振宁的影响,一直长久地发生着和存在着。

附件列表


0

故事内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本故事还有待完善,请 编辑

上一篇 乔治·汤姆斯    下一篇 上海市第六十中学

同义词

暂无同义词
  • 友情链接:
  • 中原企业家
  • 华锐社区
  • 法学学习
  • 故事库
  • 舆情信息
  • 郑州商业观察
  • 美丽中国
  • 药食同源
  • Lovely China
  • 纯欲天花板
  • 留学生