电弧
目录
开关电器的基本功能就是能够在所要求的短时间内分合电路,即起所谓开关的作用,机械式开关设备是用触头来开断电路电流的,在大气中开断电路时,只要电压超过12—20V,被开断的电流超过0.25—1A,在触头间隙(也称弧隙)中通常产生一团温度极高、发出强光且能够导电的近似圆柱形的气体,这就是电弧 。
一直到电弧熄灭,触头间隙成为绝缘介质后,电流才被开断。发生在开关设备中的电弧简称为开关电弧。这种开关电弧现象,也即电弧燃烧和熄灭过程是开关电器最重要的内容。
开关电弧是等离子体的一种形式,属低温等离子体。开关电器中电弧的熄灭就是要积极地利用电弧等离子体的温度控制来实现,对于高电压大电流电路来说、只有产生电弧、才能实现对电弧等离子体的温度控制。对于开关电器而言,希望它反有如下特件;
(1)电导率的变化范围尽可能大,即要在导体与完全绝缘体之间变化;
(2)电导率的变化速度尽可能快。
前一项特性在本质上决定于等离子体的材料,因此,引进新的灭弧介质是取得技术进步的关键。后一项特性虽然也在较大程度上决定于等离子体的材料,但更易于受到等离子体控制方法的影响,作为开关电器核心部分的灭弧室的作用正在于对电弧等离子体的控制,加速其电导率的变化。
电弧通常分为三个区域:阴极区、弧柱区、阳极区
电弧中的电流从微观上看是电子及正离子在电场作用下移动的结果,其中电子的移动构成电流的主要部分。阴极的作用是发射大量电子,在电场的作用下趋向阳极方向从而构成阴极区的电流。
电弧的阴极区对电弧的发生和物理过程具有重要的意义,形成电弧放电的大部分电子是在阴极区产生或由阴极本身发射的。电弧放电时,实际上并不是整个阴极全部参加放电过程,阴极表面的放电只集中在几个很小的区域,这个小区域称为阴极斑点,它是一个非常集中,面积很小的光亮区域,其电流密度很大.是电弧放电中强大电子流的来源。
阴极发射电子的机制有两种:热发射和场致发射。
阴极表面电于发射只形成阴极区的电流,弧柱部分导电需要在弧柱区域也能出现大量自由电子,这就需要使弧柱区的气体原子游离。气体原子游离的方式通常有电场游离和热游离两种。
与可逆化学反应相似。在电弧中一方面由于热游离使得正离子与电子不断增多。同时也存在去游离的作用,使正离子和电子减少。去游离包括复合和扩散两种方式。
弧柱的特性和物理过程对电弧起着重要的作用。开关电弧中主要研究的就是弧柱的特性。
可把阳极分为被动型和主动型两种。
在被动型中。阳极只起收集电子的作用。在主动型中,阳极不但收集电子而且产生金属蒸气,因而也可以向弧柱提供带电粒子。
阳极表面也存在阳极斑点。
上述三个区域对电弧的作用因电弧的情况不同而不同。对于长度只有几个毫米的电弧。电弧电压主要由阴极区压降和阳极区压降组成,其中的物理过程对电弧起主要作用。这种电弧称为短弧。而对于长度较大的电弧,弧柱则起主要作用,阴极、阳极的过程不起主要作用甚至可以忽略,这种电弧称为长弧。在开关中的电弧一般属于长弧。
1、电路开断时电弧的发生
在触头开始分离时.作用在它们之间的接触压力将减少,接触面积也缩小,接触电阻和触头中放出的热量就增加。热量集中在很小的体积中,金属被加热到高温而熔化。在触头之间形成液态金属桥,最后金属桥被拉开,在触头之间形成过渡的或稳定的电弧。如果放电是稳定的,就是所谓的开断电弧。放电稳定性与很多因素有关,如在开断的的电流、触头电路的特性、触头分离的速度等。为了使电弧点燃,某一最低电流值是必需的。
2、触头闭合时电弧的发生
3、真空和气体间隙的击穿
4、从辉光放电到电弧放电的转变
5、从火花放电到电弧放电的转变
〈1〉按电流种类可分为:交流电弧、直流电弧和脉冲电弧。
〈2〉按电弧的状态可分为:自由电弧和压缩电弧(如等离子弧)。
〈3〉按电极材料可分为:熔化极电弧和不熔化极电弧。
当用开关电器断开电流时,如果电路电压不低于10—20伏,电流不小于80~100mA,电器的触头间便会产生电弧。
因此,在了解开关电器的结构和工作情况之前,首先来看看其是如何产生和熄灭的。
电弧的形成是触头间中性质子(分子和原子)被游离的过程。开关触头分离时,触头间距离很小,电场强度E很高(E = U/d)。当电场强度超过3×10^6V/m时,阴极表面的电子就会被电场力拉出而形成触头空间的自由电子。这种游离方式称为:强电场发射。
从阴极表面发射出来的自由电子和触头间原有的少数电子,在电场力的作用下向阳极作加速运动,途中不断地和中性质点相碰撞。只要电子的运动速度v足够高,电子的动能A=1/2mv^2足够大,就可能从中性粒子中打出电子,形成自由电子和正离子。这种现象称为碰撞游离。新形成的自由电子也向阳极作加速运动,同样地会与中性质点碰撞而发生游离。碰撞游离连续进行的结果是触头间充满了电子和正离子,具有很大的电导;在外加电压下,介质被击穿而产生电弧,电路再次被导通。
触头间电弧燃烧的间隙称为弧隙。电弧形成后,弧隙间的高温使阴极表面的电子获得足够的能量而向外发射,形成热电场发射。同时在高温的作用下(电弧中心部分维持的温度可达5000℃以上),气体中性质点的不规则热运动速度增加。当具有足够动能的中性质点相互碰撞时,将被游离而形成电子和正离子,这种现象称为热游离。
随着触头分开的距离增大,触头间的电场强度E逐渐减小,这时电弧的燃烧主要是依靠热游离维持的。
在开关电器的触头间,发生游离过程的同时,还发生着使带电质点减少的去游离过程。
导电性强、能量集中、温度高、亮度大、质量轻、易变性等 。
电弧可作为强光源如弧光灯,紫外线源如太阳灯或强热源如电弧炉。
电弧具有热效应。
电弧是高温高导电的游离气体,它不仅对触头有很大的破坏作用,而且使断开电路的时间延长 。
电弧对供配电系统的安全运行有很大的影响。开关电器在结构设计上要保证其操作时电弧能迅速地熄灭 。
交流电弧每一个周期要暂时熄灭两次。
真空灭弧室可以迅速恢复间隙绝缘能力以及耐受系统瞬态恢复电压的能力,最终将电弧熄灭。
附件列表
故事内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
